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Algorithms in health care

 Many great uses of algorithms in health

• Risk prediction: What will happen

• Diagnosis: Likelihood that patient has a disease

• …

 Many ways this can go wrong

• Algorithms can reproduce, scale up bias
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Example: Targeting extra help for complex patients

 Complex, chronically ill patients have high costs, poor care

• ‘High-risk care management’ can help

• But expensive – so targeting critical

 Algorithms are used everywhere for this

• Specific software we study: 70 million patients/year (US)

• Market estimates: 150-200 million patients/year (US)

 Common goal: Find patients who are going to get sick 

• As measured by future health care costs

• Target help to highest-risk now (and screen out low risk)



Confidential and proprietary information. All rights reserved.

We studied ‘racial bias’

 Principle: Same score

→ Treated the same
• Should have same needs

 Color of their skin should not matter

 How much bias? 

• Fast track today: 18% Black

• Without bias:   47% Black

Black patients: worse 

realized health at any 

algorithm score
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Obermeyer, Powers, Vogeli, Mullainathan, Science 2019
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Dissecting the bias

 Algorithm predicts health costs accurately 

• For Black and White patients alike

• …Exactly as we designed it to do

 But cost is a biased proxy for health

1. White patients have better access to health care

2. The health system treats Black patients differently

 Result: Black patients with the same health cost less

• So accurate cost prediction = biased health prediction
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Our ‘playbook’—inspired by work over past 2 years

 Bad news: We found bias almost everywhere we looked

• Population health resource allocation

• Clinical disease prediction

• Operational decisions

 Good news: Almost all fixable

• By retraining on less biased target
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Lessons for preventing bias in the real world

1. Inventory all algorithms in use

• Common finding: no one knows what’s being used
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Lessons for preventing bias in the real world

1. Inventory all algorithms in use

• Common finding: no one knows what’s being used

2. Document performance

• Ideal target performance overall and by group

• Biased or inaccurate algorithms must be fixed or deleted

3. Organizational structure for algorithm oversight

• No one in C-suite has responsibility

• Oversight is a strategic priority—even bigger than just bias
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Lessons we took away from this

 Getting the exact target for algorithms right matters a lot

• Cost is a bad proxy for need

 This might sound familiar to you

• Because the same issues come up in quality measures

 Health equity strategy—how to pick the right metrics?

• HbA1c… what about undiagnosed diabetics?

• Statin adherence… what about those never prescribed? 
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Pain is concentrated in society’s most disadvantaged

 Black patients: more pain

 Is this just because they have more problems like arthritis?

• Two patients, similar x-rays

• Compare pain scores

 Black, lower-income, lower-education: still have more pain

 Where does this ‘pain gap’ come from?
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Society

Two Views 

The knee
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Could the current state of the art be missing something?

 Objective grading 

scales, based on x-ray 

appearance

• Most common: 

Kellgren-Lawrence 

(KLG)

 Original studies on coal 

miners in Lancashire, 

England

• No mention of 

subjects’ race, sex
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Kellgren-Lawrence  = 2/4 Pain = 9/10

Algorithm explains half 

of ‘unexplained’ pain in 

Black patients…

5x more than 

radiologists

Finding a better target for prediction

Learn from the radiologist Listen to the patient
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The stakes are high: Who gets a new knee?

 Patients with severe pain:

• Only eligible if they have severe 

arthritis

 But who decides?

 Algorithm would double fraction of Black 

knees eligible vs. radiologist
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Closing thoughts

 The promise of algorithms: Doing better than humans

• Not just reproducing our errors and biases

 Algorithms should learn from patients, not humans

 Small-seeming choices have large consequences

• Make sure your organization is doing it right
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